An optimal Liouville theorem for the linear heat equation with a nonlinear boundary condition
Autor: | Quittner, Pavol |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Liouville theorems for scaling invariant nonlinear parabolic problems in the whole space and/or the halfspace (saying that the problem does not posses positive bounded solutions defined for all times $t\in(-\infty,\infty)$) guarantee optimal estimates of solutions of related initial-boundary value problems in general domains. We prove an optimal Liouville theorem for the linear equation in the halfspace complemented by the nonlinear boundary condition $\partial u/\partial\nu=u^q$, $q>1$. |
Databáze: | arXiv |
Externí odkaz: |