Deterministically fabricated strain-tunable quantum dot single-photon sources emitting in the telecom O-band

Autor: Srocka, Nicole, Mrowiński, Pawel, Große, Jan, Schmidt, Marco, Rodt, Sven, Reitzenstein, Stephan
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1063/5.0030991
Popis: Most quantum communication schemes aim at the long-distance transmission of quantum information. In the quantum repeater concept, the transmission line is subdivided into shorter links interconnected by entanglement distribution via Bell-state measurements to overcome inherent channel losses. This concept requires on-demand single-photon sources with a high degree of multi-photon suppression and high indistinguishability within each repeater node. For a successful operation of the repeater, a spectral matching of remote quantum light sources is essential. We present a spectrally tunable single-photon source emitting in the telecom O-band with the potential to function as a building block of a quantum communication network based on optical fibers. A thin membrane of GaAs embedding InGaAs quantum dots (QDs) is attached onto a piezoelectric actuator via gold thermocompression bonding. Here the thin gold layer acts simultaneously as an electrical contact, strain transmission medium and broadband backside mirror for the QD-micromesa. The nanofabrication of the QD-micromesa is based on in-situ electron-beam lithography, which makes it possible to integrate pre-selected single QDs deterministically into the center of monolithic micromesa structures. The QD pre-selection is based on distinct single-QD properties, signal intensity and emission energy. In combination with strain-induced fine tuning this offers a robust method to achieve spectral resonance in the emission of remote QDs. We show that the spectral tuning has no detectable influence on the multi-photon suppression with $g^{(2)}(0)$ as low as 2-4% and that the emission can be stabilized to an accuracy of 4 $\mu$eV using a closed-loop optical feedback.
Databáze: arXiv