Genus 2 Cantor sets

Autor: Fletcher, Alastair N., Stoertz, Daniel
Rok vydání: 2020
Předmět:
Zdroj: Pacific J. Math. 321 (2022) 283-307
Druh dokumentu: Working Paper
DOI: 10.2140/pjm.2022.321.283
Popis: We construct a geometrically self-similar Cantor set $X$ of genus $2$ in $\mathbb{R}^3$. This construction is the first for which the local genus is shown to be $2$ at every point of $X$. As an application, we construct, also for the first time, a uniformly quasiregular mapping $f:\mathbb{R}^3 \to \mathbb{R}^3$ for which the Julia set $J(f)$ is a genus $2$ Cantor set.
Comment: 20 pages, 6 figures
Databáze: arXiv