Autor: |
Thomas, Robin, Yoo, Youngho |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
J. Combin. Theory Ser. B 160 (2023), 114-143 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1016/j.jctb.2022.12.007 |
Popis: |
It is known that $A$-paths of length $0$ mod $m$ satisfy the Erd\H{o}s-P\'osa property if $m=2$ or $m=4$, but not if $m > 4$ is composite. We show that if $p$ is prime, then $A$-paths of length $0$ mod $p$ satisfy the Erd\H{o}s-P\'osa property. More generally, in the framework of undirected group-labelled graphs, we characterize the abelian groups $\Gamma$ and elements $\ell \in \Gamma$ for which the Erd\H{o}s-P\'osa property holds for $A$-paths of weight $\ell$. |
Databáze: |
arXiv |
Externí odkaz: |
|