On the local time of the Half-Plane Half-Comb walk

Autor: Csaki, Endre, Foldes, Antonia
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: The Half-Plane Half-Comb walk is a random walk on the plane, when we have a square lattice on the upper half-plane and a comb structure on the lower half-plane, i.e. horizontal lines below the x-axis are removed. We prove that the probability that this walk returns to the origin in 2N steps is asymptotically equal to 2/(\pi N). As15 pag a consequence we prove strong laws and a limit distribution for the local time.
Comment: 15 pages
Databáze: arXiv