On the local time of the Half-Plane Half-Comb walk
Autor: | Csaki, Endre, Foldes, Antonia |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The Half-Plane Half-Comb walk is a random walk on the plane, when we have a square lattice on the upper half-plane and a comb structure on the lower half-plane, i.e. horizontal lines below the x-axis are removed. We prove that the probability that this walk returns to the origin in 2N steps is asymptotically equal to 2/(\pi N). As15 pag a consequence we prove strong laws and a limit distribution for the local time. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |