Applying the Roofline model for Deep Learning performance optimizations

Autor: Czaja, Jacek, Gallus, Michal, Wozna, Joanna, Grygielski, Adam, Tao, Luo
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper We present a methodology for creating Roofline models automatically for Non-Unified Memory Access (NUMA) using Intel Xeon as an example. Finally, we present an evaluation of highly efficient deep learning primitives as implemented in the Intel oneDNN Library.
Comment: oneDNN library analysis with roofline model
Databáze: arXiv