Cdh Descent for Homotopy Hermitian $K$-Theory of Rings with Involution
Autor: | Carmody, Daniel |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Doc. Math. 26, 1275-1327 (2021) |
Druh dokumentu: | Working Paper |
Popis: | We provide a geometric model for the classifying space of automorphism groups of Hermitian vector bundles over a ring with involution $R$ such that $\frac{1}{2} \in R$; this generalizes a result of Schlichting-Tripathi \cite{SchTri}. We then prove a periodicity theorem for Hermitian $K$-theory and use it to construct an $E_\infty$ motivic ring spectrum $\mathbf{KR}^{\mathrm{alg}}$ representing homotopy Hermitian $K$-theory. From these results, we show that $\mathbf{KR}^{\mathrm{alg}}$ is stable under base change, and cdh descent for homotopy Hermitian $K$-theory of rings with involution is a formal consequence. Comment: 34 pages: Final version - removed unnecessary hypothesis in theorem 5.1 |
Databáze: | arXiv |
Externí odkaz: |