The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds
Autor: | Cekić, Mihajlo, Delarue, Benjamin, Dyatlov, Semyon, Paternain, Gabriel P. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00222-022-01108-x |
Popis: | We show that for a generic conformal metric perturbation of a compact hyperbolic 3-manifold $\Sigma$ with Betti number $b_1$, the order of vanishing of the Ruelle zeta function at zero equals $4-b_1$, while in the hyperbolic case it is equal to $4-2b_1$. This is in contrast to the 2-dimensional case where the order of vanishing is a topological invariant. The proof uses the microlocal approach to dynamical zeta functions, giving a geometric description of generalized Pollicott-Ruelle resonant differential forms at 0 in the hyperbolic case and using first variation for the perturbation. To show that the first variation is generically nonzero we introduce a new identity relating pushforwards of products of resonant and coresonant 2-forms on the sphere bundle $S\Sigma$ with harmonic 1-forms on $\Sigma$. Comment: 69 pages; revisions to the exposition following the referee comments. To appear in Inventiones Mathematicae |
Databáze: | arXiv |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |