G-rigid local systems are integral
Autor: | Klevdal, Christian, Patrikis, Stefan |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $G$ be a reductive group, and let $X$ be a smooth quasi-projective complex variety. We prove that any $G$-irreducible, $G$-cohomologically rigid local system on $X$ with finite order abelianization and quasi-unipotent local monodromies is integral. This generalizes work of Esnault and Groechenig when $G= \mathrm{GL}_n$, and it answers positively a conjecture of Simpson for $G$-cohomologically rigid local systems. Along the way we show that the connected component of the Zariski-closure of the monodromy group of any such local system is semisimple. Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |