G-rigid local systems are integral

Autor: Klevdal, Christian, Patrikis, Stefan
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: Let $G$ be a reductive group, and let $X$ be a smooth quasi-projective complex variety. We prove that any $G$-irreducible, $G$-cohomologically rigid local system on $X$ with finite order abelianization and quasi-unipotent local monodromies is integral. This generalizes work of Esnault and Groechenig when $G= \mathrm{GL}_n$, and it answers positively a conjecture of Simpson for $G$-cohomologically rigid local systems. Along the way we show that the connected component of the Zariski-closure of the monodromy group of any such local system is semisimple.
Comment: 21 pages
Databáze: arXiv