Categorical Enumerative Invariants, I: String vertices
Autor: | Caldararu, Andrei, Costello, Kevin, Tu, Junwu |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We define combinatorial counterparts to the geometric string vertices of Sen-Zwiebach and Costello-Zwiebach, which are certain closed subsets of the moduli spaces of curves. Our combinatorial vertices contain the same information as the geometric ones, are effectively computable, and act on the Hochschild chains of a cyclic $A_\infty$-algebra. This is the first in a series of two papers where we define enumerative invariants associated to a pair consisting of a cyclic $A_\infty$-algebra and a splitting of the Hodge filtration on its cyclic homology. These invariants conjecturally generalize the Gromov-Witten and Fan-Jarvis-Ruan-Witten invariants from symplectic geometry, and the Bershadsky-Cecotti-Ooguri-Vafa invariants from holomorphic geometry. Comment: 35 pages |
Databáze: | arXiv |
Externí odkaz: |