Play MNIST For Me! User Studies on the Effects of Post-Hoc, Example-Based Explanations & Error Rates on Debugging a Deep Learning, Black-Box Classifier
Autor: | Ford, Courtney, Kenny, Eoin M., Keane, Mark T. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | IJCAI-20 Workshop on Explainable AI (XAI), September 2020 |
Druh dokumentu: | Working Paper |
Popis: | This paper reports two experiments (N=349) on the impact of post hoc explanations by example and error rates on peoples perceptions of a black box classifier. Both experiments show that when people are given case based explanations, from an implemented ANN CBR twin system, they perceive miss classifications to be more correct. They also show that as error rates increase above 4%, people trust the classifier less and view it as being less correct, less reasonable and less trustworthy. The implications of these results for XAI are discussed. Comment: 2 Figures, 1 Table, 8 pages |
Databáze: | arXiv |
Externí odkaz: |