Algebraic independence of certain infinite products involving the Fibonacci numbers

Autor: Duverney, Daniel, Tachiya, Yohei
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\{F_{n}\}_{n\geq0}$ be the sequence of the Fibonacci numbers. The aim of this paper is to give explicit formulae for the infinite products \[ \prod_{n=1}^{\infty}\left( 1+\frac{1}{F_{n}}\right) ,\qquad\prod_{n=3}^{\infty}\left( 1-\frac{1}{F_{n}}\right) \] in terms of the values of the Jacobi theta functions. From this we deduce the algebraic independence over $\mathbb{Q}$ of the above numbers by applying Bertrand's theorem on the algebraic independence of the values of the Jacobi theta functions.
Comment: 4 pages
Databáze: arXiv