Algebraic independence of certain infinite products involving the Fibonacci numbers
Autor: | Duverney, Daniel, Tachiya, Yohei |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\{F_{n}\}_{n\geq0}$ be the sequence of the Fibonacci numbers. The aim of this paper is to give explicit formulae for the infinite products \[ \prod_{n=1}^{\infty}\left( 1+\frac{1}{F_{n}}\right) ,\qquad\prod_{n=3}^{\infty}\left( 1-\frac{1}{F_{n}}\right) \] in terms of the values of the Jacobi theta functions. From this we deduce the algebraic independence over $\mathbb{Q}$ of the above numbers by applying Bertrand's theorem on the algebraic independence of the values of the Jacobi theta functions. Comment: 4 pages |
Databáze: | arXiv |
Externí odkaz: |