Relative Nash-type and $L^2$-Sobolev inequalities for Dunkl operators and applications
Autor: | Mustapha, S., Sifi, M. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We investigate local variants of Nash inequalities in the context of Dunkl operators. Pseudo-Poincar\'e inequalities are first established using pointwise gradient estimates of the Dunkl heat kernel. These inequalities allow to obtain relative Nash-type inequalities which are used to derive mean value inequalities for subsolutions of the heat equation on orbits of balls not necessarily centered on the origin. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: |