A representation formula for the distributional normal derivative
Autor: | Ponce, Augusto C., Wilmet, Nicolas |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove an integral representation formula for the distributional normal derivative of solutions of $$ \left\{ \begin{aligned} - \Delta u + V u &= \mu && \text{in $\Omega$,} u &= 0 && \text{on $\partial\Omega$,} \end{aligned} \right. $$ where $V \in L_{\mathrm{loc}}^1(\Omega)$ is a nonnegative function and $\mu$ is a finite Borel measure on $\Omega$. As an application, we show that the Hopf lemma holds almost everywhere on $\partial\Omega$ when $V$ is a nonnegative Hopf potential. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: |