$H^1$-Stability of the $L^2$-Projection onto Finite Element Spaces on Adaptively Refined Quadrilateral Meshes
Autor: | Ali, Mazen, Funken, Stefan A., Schmidt, Anja |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1093/imanum/drab048 |
Popis: | The $L^2$-orthogonal projection $\Pi_h:L^2(\Omega)\rightarrow\mathbb{V}_h$ onto a finite element (FE) space $\mathbb{V}_h$ is called $H^1$-stable iff $\|\nabla\Pi_h u\|_{L^2(\Omega)}\leq C\|u\|_{H^1(\Omega)}$, for any $u\in H^1(\Omega)$ with a positive constant $C\neq C(h)$ independent of the mesh size $h>0$. In this work, we discuss local criteria for the $H^1$-stability of adaptively refined meshes. We show that adaptive refinement strategies for quadrilateral meshes in 2D (Q-RG and Q-RB), introduced originally in Bank et al. 1982 and Kobbelt 1996, are $H^1$-stable for FE spaces of polynomial degree $p=2,\ldots,9$. Comment: 19 pages, 4 figures, 6 tables |
Databáze: | arXiv |
Externí odkaz: |