From noisy point clouds to complete ear shapes: unsupervised pipeline

Autor: Valdeira, Filipa, Ferreira, Ricardo, Micheletti, Alessandra, Soares, Cláudia
Rok vydání: 2020
Předmět:
Zdroj: IEEE Access 9 (2021) 127720-127734
Druh dokumentu: Working Paper
DOI: 10.1109/ACCESS.2021.3111811
Popis: Ears are a particularly difficult region of the human face to model, not only due to the non-rigid deformations existing between shapes but also to the challenges in processing the retrieved data. The first step towards obtaining a good model is to have complete scans in correspondence, but these usually present a higher amount of occlusions, noise and outliers when compared to most face regions, thus requiring a specific procedure. Therefore, we propose a complete pipeline taking as input unordered 3D point clouds with the aforementioned problems, and producing as output a dataset in correspondence, with completion of the missing data. We provide a comparison of several state-of-the-art registration methods and propose a new approach for one of the steps of the pipeline, with better performance for our data.
Databáze: arXiv