A Bombieri-Vinogradov Theorem for primes in short intervals and small sectors

Autor: Khale, Tanmay, O'Kuhn, Cooper, Panidapu, Apoorva, Sun, Alec, Zhang, Shengtong
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.jnt.2021.04.004
Popis: Let $K$ be a finite Galois extension of $\mathbb{Q}$. We count primes in short intervals represented by the norm of a prime ideal of $K$ satisfying a small sector condition determined by Hecke characters. We also show that such primes are well-distributed in arithmetic progressions in the sense of Bombieri-Vinogradov. This extends previous work of Duke and Coleman.
Comment: 20 pages
Databáze: arXiv