A Bombieri-Vinogradov Theorem for primes in short intervals and small sectors
Autor: | Khale, Tanmay, O'Kuhn, Cooper, Panidapu, Apoorva, Sun, Alec, Zhang, Shengtong |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jnt.2021.04.004 |
Popis: | Let $K$ be a finite Galois extension of $\mathbb{Q}$. We count primes in short intervals represented by the norm of a prime ideal of $K$ satisfying a small sector condition determined by Hecke characters. We also show that such primes are well-distributed in arithmetic progressions in the sense of Bombieri-Vinogradov. This extends previous work of Duke and Coleman. Comment: 20 pages |
Databáze: | arXiv |
Externí odkaz: |