Popis: |
This article introduces the notion of L-tangle-free compact hyperbolic surfaces, inspired by the identically named property for regular graphs. Random surfaces of genus g, picked with the Weil-Petersson probability measure, are (a log g)-tangle-free for any a < 1. This is almost optimal, for any surface is (4 log g + O(1))-tangled. We establish various geometric consequences of the tangle-free hypothesis at a scale L, amongst which the fact that closed geodesics of length < L/4 are simple, disjoint and embedded in disjoint hyperbolic cylinders of width $\ge$ L/4. |