Time-dependent heterogeneity leads to transient suppression of the COVID-19 epidemic, not herd immunity

Autor: Tkachenko, Alexei V., Maslov, Sergei, Elbanna, Ahmed, Wong, George N., Weiner, Zachary J., Goldenfeld, Nigel
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1073/pnas.2015972118
Popis: Epidemics generally spread through a succession of waves that reflect factors on multiple timescales. On short timescales, super-spreading events lead to burstiness and overdispersion, while long-term persistent heterogeneity in susceptibility is expected to lead to a reduction in the infection peak and the herd immunity threshold (HIT). Here, we develop a general approach to encompass both timescales, including time variations in individual social activity, and demonstrate how to incorporate them phenomenologically into a wide class of epidemiological models through parameterization. We derive a non-linear dependence of the effective reproduction number Re on the susceptible population fraction S. We show that a state of transient collective immunity (TCI) emerges well below the HIT during early, high-paced stages of the epidemic. However, this is a fragile state that wanes over time due to changing levels of social activity, and so the infection peak is not an indication of herd immunity: subsequent waves can and will emerge due to behavioral changes in the population, driven (e.g.) by seasonal factors. Transient and long-term levels of heterogeneity are estimated by using empirical data from the COVID-19 epidemic as well as from real-life face-to-face contact networks. These results suggest that the hardest-hit areas, such as NYC, have achieved TCI following the first wave of the epidemic, but likely remain below the long-term HIT. Thus, in contrast to some previous claims, these regions can still experience subsequent waves.
Databáze: arXiv