On the weighted average number of subgroups of ${\mathbb {Z}}_{m}\times {\mathbb {Z}}_{n}$ with $mn\leq x$
Autor: | Kiuchi, Isao, Eddin, Sumaia Saad |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\mathbb{Z}_{m}$ be the additive group of residue classes modulo $m$. For any positive integers $m$ and $n$, let $s(m,n)$ and $c(m,n)$ denote the total number of subgroups and cyclic subgroups of the group ${\mathbb{Z}}_{m}\times {\mathbb{Z}}_{n}$, respectively. Define $$ \widetilde{D}_{s}(x) = \sum_{mn\leq x}s(m,n)\log\frac{x}{mn} \quad \quad \widetilde{D}_{c}(x) = \sum_{mn\leq x}c(m,n)\log\frac{x}{mn}. $$ In this paper, we study the asymptotic behaviour of functions $\widetilde{D}_{s}(x)$ and $\widetilde{D}_{c}(x)$. Comment: 9 pages |
Databáze: | arXiv |
Externí odkaz: |