Rankin-Selberg integrals for local symmetric square factors on $GL\mathrm{(2)}$

Autor: Jo, Yeongseong
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\pi$ be an irreducible admissible (complex) representation of $GL(2)$ over a non-archimedean characteristic zero local field with odd residual characteristic. In this paper we prove the equality between the local symmetric square $L$-function associated to $\pi$ arising from integral representations and the corresponding Artin $L$-function for its Langlands parameter through the local Langlands correspondence. With this in hand, we show the stability of local symmetric $\gamma$-factors attached to $\pi$ under highly ramified twists.
Databáze: arXiv