Rankin-Selberg integrals for local symmetric square factors on $GL\mathrm{(2)}$
Autor: | Jo, Yeongseong |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\pi$ be an irreducible admissible (complex) representation of $GL(2)$ over a non-archimedean characteristic zero local field with odd residual characteristic. In this paper we prove the equality between the local symmetric square $L$-function associated to $\pi$ arising from integral representations and the corresponding Artin $L$-function for its Langlands parameter through the local Langlands correspondence. With this in hand, we show the stability of local symmetric $\gamma$-factors attached to $\pi$ under highly ramified twists. |
Databáze: | arXiv |
Externí odkaz: |