Hausdorff operators on Fock Spaces
Autor: | Galanopoulos, Petros, Stylogiannis, Georgios |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\mu$ be a positive Borel measure on the positive real axis. We study the integral operator $$ \mathcal{H}_{\mu}(f)(z)=\int_{0}^{\infty}\frac{1}{t}f\left(\frac{z}{t}\right)\,d\mu(t),\quad z\in \mathbb{C}\,, $$ acting on the Fock spaces $F^{p}_{\alpha}$, $p\in [1,\infty],\,\alpha >0$. Its action is easily seen to be a coefficient multiplication by the moment sequence $$ \mu_n= \int_{1}^{\infty}\frac{1}{t^{n+1}}\,d\mu(t) . $$ We prove that \begin{equation*} ||\mathcal{H}_{\mu}||_{F^{p}_{\alpha}\to F^{p}_{\alpha}}=\sup_{n\in\mathbb{N}}\mu_n,\,\,\,\,\,1\leq p\leq \infty\,\,. \end{equation*} A little-o,condition describes the compactness of $\mathcal{H}_{\mu}$ on every $F^{p}_{\alpha},\,p\in (1,\infty )$. In addition, we completely characterize the Schatten class membership of $\mathcal{H}_{\mu}$. Comment: 14 pages |
Databáze: | arXiv |
Externí odkaz: |