Popis: |
The present study aims to clarify the effect of the polytropic index (i.e., the ratio of specific heats in the context of a perfect gas) on the detonation structure. This is addressed by two-dimensional numerical simulations. To ease the clarification of the role of gasdynamics, a simple Arrhenius kinetic law is used for the chemical model. The activation energy, normalized by the shock temperature, is kept constant to obtain the same reaction rate sensitivity to temperature in all considered mixtures. This procedure dissociates the gasdynamic effects from the chemistry effects. The numerical results reveal that in mixtures with low polytropic indicies, the convective mixing is enhanced compared to mixtures with higher polytropic indicies. The mixing is evaluated using Lagrangian tracers. Moreover, mixtures with low polytropic indicies are found to have a shorter reaction length than mixtures with high polytropic indicies. Also, for the range of parameters considered in this study the results indicate that Mach stem bifurcation in detonations due to jetting is primarily a gasdynamic driven mechanism. |