Pseudo-Euclidean Billiards within Confocal Curves on the Hyperboloid of One Sheet
Autor: | Gasiorek, Sean, Radnovic, Milena |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.geomphys.2020.104032 |
Popis: | We consider a billiard problem for compact domains bounded by confocal conics on a hyperboloid of one sheet in the Minkowski space. We show that there are two types of confocal families in such setting. Using an algebro-geometric integration technique, we prove that the billiard within generalized ellipses of each type is integrable in the sense of Liouville. Further, we prove a generalization of the Poncelet theorem and derive Cayley-type conditions for periodic trajectories and explore geometric consequences. Comment: 30 pages, 15 figures |
Databáze: | arXiv |
Externí odkaz: |