QQ-system and Weyl-type transfer matrices in integrable SO(2r) spin chains
Autor: | Ferrando, Gwenaël, Frassek, Rouven, Kazakov, Vladimir |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/JHEP02(2021)193 |
Popis: | We propose the full system of Baxter Q-functions (QQ-system) for the integrable spin chains with the symmetry of the $D_r$ Lie algebra. We use this QQ-system to derive new Weyl-type formulas expressing transfer matrices in all symmetric and antisymmetric (fundamental) representations through $r+1$ basic Q-functions. Our functional relations are consistent with the Q-operators proposed recently by one of the authors and verified explicitly on the level of operators at small finite length. Comment: 42 pages, 9 Figures; v2: typos fixed, references added; v3: references added, section 9 improved |
Databáze: | arXiv |
Externí odkaz: |