Bubbles with constant mean curvature, and almost constant mean curvature, in the hyperbolic space
Autor: | Cora, G., Musina, R. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Given a constant $k>1$, let $Z$ be the family of round spheres of radius $\textrm{artanh}(k^{-1})$ in the hyperbolic space $\mathbb{H}^3$, so that any sphere in $Z$ has mean curvature $k$. We prove a crucial nondegeneracy result involving the manifold $Z$. As an application, we provide sufficient conditions on a prescribed function $\phi$ on $\mathbb{H}^3$, which ensure the existence of a ${\cal C}^1$-curve, parametrized by $\varepsilon\approx 0$, of embedded spheres in $\mathbb{H}^3$ having mean curvature $k +\varepsilon\phi$ at each point. Comment: 31 pages |
Databáze: | arXiv |
Externí odkaz: |