A Note on Non-tangential Convergence for Schr\'{o}dinger Operators

Autor: Li, Wenjuan, Wang, Huiju, Yan, Dunyan
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: The goal of this note is to establish non-tangential convergence results for Schr\"{o}dinger operators along restricted curves. We consider the relationship between the dimension of this kind of approach region and the regularity for the initial data which implies convergence. As a consequence, we obtain a upper bound for $p$ such that the Schr\"{o}dinger maximal function is bounded from $H^{s}(\mathbb{R}^{n})$ to $L^{p}(\mathbb{R}^{n})$ for any $s > \frac{n}{2(n+1)}$.
Databáze: arXiv