A Note on Non-tangential Convergence for Schr\'{o}dinger Operators
Autor: | Li, Wenjuan, Wang, Huiju, Yan, Dunyan |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The goal of this note is to establish non-tangential convergence results for Schr\"{o}dinger operators along restricted curves. We consider the relationship between the dimension of this kind of approach region and the regularity for the initial data which implies convergence. As a consequence, we obtain a upper bound for $p$ such that the Schr\"{o}dinger maximal function is bounded from $H^{s}(\mathbb{R}^{n})$ to $L^{p}(\mathbb{R}^{n})$ for any $s > \frac{n}{2(n+1)}$. |
Databáze: | arXiv |
Externí odkaz: |