Inner ideals and structurable algebras: Moufang sets, triangles and hexagons

Autor: De Medts, Tom, Meulewaeter, Jeroen
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: We construct Moufang sets, Moufang triangles and Moufang hexagons using inner ideals of Lie algebras obtained from structurable algebras via the Tits--Kantor--Koecher construction. The three different types of structurable algebras we use are, respectively: (1) structurable division algebras, (2) algebras $D \oplus D$ for some alternative division algebra $D$, equipped with the exchange involution, (3) matrix structurable algebras $M(J,1)$ for some cubic Jordan division algebra $J$. In each case, we also determine the root groups directly in terms of the structurable algebra.
Comment: 36 pages
Databáze: arXiv