Inner ideals and structurable algebras: Moufang sets, triangles and hexagons
Autor: | De Medts, Tom, Meulewaeter, Jeroen |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We construct Moufang sets, Moufang triangles and Moufang hexagons using inner ideals of Lie algebras obtained from structurable algebras via the Tits--Kantor--Koecher construction. The three different types of structurable algebras we use are, respectively: (1) structurable division algebras, (2) algebras $D \oplus D$ for some alternative division algebra $D$, equipped with the exchange involution, (3) matrix structurable algebras $M(J,1)$ for some cubic Jordan division algebra $J$. In each case, we also determine the root groups directly in terms of the structurable algebra. Comment: 36 pages |
Databáze: | arXiv |
Externí odkaz: |