Uniqueness in Cauchy problems for diffusive real-valued strict local martingales
Autor: | Cetin, Umut, Larsen, Kasper |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For a real-valued one dimensional diffusive strict local martingale,, we provide a set of smooth functions in which the Cauchy problem has a unique classical solution under a local H\"older condition. Under the weaker Engelbert-Schmidt conditions, we provide a set in which the Cauchy problem has a unique weak solution. We exemplify our results using quadratic normal volatility models and the two dimensional Bessel process. |
Databáze: | arXiv |
Externí odkaz: |