A non Ricci-flat Einstein pseudo-Riemannian metric on a 7-dimensional nilmanifold
Autor: | Fernández, Marisa, Freibert, Marco, Sánchez, Jonatan |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We answer in the affirmative the question posed by Conti and Rossi on the existence of nilpotent Lie algebras of dimension 7 with an Einstein pseudo-metric of nonzero scalar curvature. Indeed, we construct a left-invariant pseudo-Riemannian metric $g$ of signature $(3, 4)$ on a nilpotent Lie group of dimension 7, such that $g$ is Einstein and not Ricci-flat. We show that the pseudo-metric $g$ cannot be induced by any left-invariant closed $G_2^*$-structure on the Lie group. Moreover, some results on closed and harmonic $G_2^*$-structures on an arbitrary 7-manifold $M$ are given. In particular, we prove that the underlying pseudo-Riemannian metric of a closed and harmonic $G_2^*$-structure on $M$ is not necessarily Einstein, but if it is Einstein then it is Ricci-flat. Comment: 20 pages |
Databáze: | arXiv |
Externí odkaz: |