MLJ: A Julia package for composable machine learning

Autor: Blaom, Anthony D., Kiraly, Franz, Lienart, Thibaut, Simillides, Yiannis, Arenas, Diego, Vollmer, Sebastian J.
Rok vydání: 2020
Předmět:
Zdroj: Journal of Open Source Software, 2020, vol. 5(55), p. 2704
Druh dokumentu: Working Paper
DOI: 10.21105/joss.02704
Popis: MLJ (Machine Learing in Julia) is an open source software package providing a common interface for interacting with machine learning models written in Julia and other languages. It provides tools and meta-algorithms for selecting, tuning, evaluating, composing and comparing those models, with a focus on flexible model composition. In this design overview we detail chief novelties of the framework, together with the clear benefits of Julia over the dominant multi-language alternatives.
Comment: Shortened version of previous version
Databáze: arXiv