Concentration functions and entropy bounds for discrete log-concave distributions

Autor: Bobkov, Sergey G., Marsiglietti, Arnaud, Melbourne, James
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: Two-sided bounds are explored for concentration functions and R\'enyi entropies in the class of discrete log-concave probability distributions. They are used to derive certain variants of the entropy power inequalities.
Comment: 21 pages
Databáze: arXiv