On $q$-analogs of zeta functions associated with a pair of $q$-analogs of Bernoulli numbers and polynomials
Autor: | El-Guindy, Ahmad, Mansour, Zeinab |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we use two different approaches to introduce $q$-analogs of Riemann's zeta function and prove that their values at even integers are related to the $q$-Bernoulli and $q$ Euler's numbers introduced by Ismail and Mansour [Analysis and Applications, {\bf{17}}, 6, 2019, 853--895]. Comment: 25 pages, 2 figures (version 2 added more explanation of certain computations and corrected some minor typos) |
Databáze: | arXiv |
Externí odkaz: |