Stochastic stability for partially hyperbolic diffeomorphisms with mostly expanding and contracting centers

Autor: Mi, Zeya
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: We prove the stochastic stability of an open class of partially hyperbolic diffeomorphisms, each of which admits two centers $E^c_1$ and $E^c_2$ such that any Gibbs $u$-state admits only positive (resp. negative) Lyapunov exponents along $E^c_1$ (resp. $E^c_2$).
Databáze: arXiv