One property of a planar curve whose convex hull covers a given convex figure
Autor: | Nikonorov, Yu. G., Nikonorova, Yu. V. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.4171/EM/458 |
Popis: | In this note, we prove the following conjecture by A. Akopyan and V. Vysotsky: If the convex hull of a planar curve $\gamma$ covers a planar convex figure $K$, then $\operatorname{length}(\gamma) \geq \operatorname{per} (K) - \operatorname{diam} (K)$. In addition, all cases of equality in this inequality are studied. Comment: 10 pages, 4 figures |
Databáze: | arXiv |
Externí odkaz: |