Star versions of Hurewicz spaces
Autor: | Singh, Sumit, Kocinac, Ljubisa D. R. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A space $X$ is said to have the set star Hurewicz property if for each nonempty subset $A$ of $X$ and each sequence $(\mathcal{U}_n: n \in \mathbb{N})$ of sets open in $X$ such that for each $n\in \mathbb N$, $\overline{A} \subset \cup \mathcal{U}_n$, there is a sequence $(\mathcal{V}_n: n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $\mathcal{V}_n$ is a finite subset of $\mathcal{U}_n$ and for each $x \in A$, $x \in {\rm St}(\cup \mathcal{V}_n, \mathcal{U}_n)$ for all but finitely many $n$. In this paper, we investigate the relationships among set star Hurewicz, set strongly star Hurewicz and other related covering properties and study the topological properties of these topological spaces. Comment: 11 pages; Comments are welcome |
Databáze: | arXiv |
Externí odkaz: |