Autor: |
Li, Haojian, Junge, Marius, LaRacuente, Nicholas |
Rok vydání: |
2020 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
This paper extends the Bakry-\'{E}mery theorem connecting the Ricci curvature and log-Sobolev inequalities to the matrix-valued setting. Using tools from noncommuative geometry, it is shown that for a right invariant second order differential operator on a compact Lie group, a lower bound for a matrix-valued modified log-Sobolev inequality is equivalent to a uniform lower bound for all finite dimensional representations. Using combinatorial tools, we obtain computable lower bounds for matrix-valued log-Sobolev inequalities of graph-H\"ormander systems using combinatorial methods. |
Databáze: |
arXiv |
Externí odkaz: |
|