The precise representative for the gradient of the Riesz potential of a finite measure
Autor: | Cufí, Julià, Ponce, Augusto C., Verdera, Joan |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | J. London Math. Soc. (2) 106 (2022), 1603-1627 |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/jlms.12607 |
Popis: | Given a finite nonnegative Borel measure $m$ in $\mathbb{R}^{d}$, we identify the Lebesgue set $\mathcal{L}(V_{s}) \subset \mathbb{R}^{d}$ of the vector-valued function $$V_{s}(x) = \int_{\mathbb{R}^{d}}\frac{x - y}{|x - y|^{s + 1}} \mathrm{d}m(y), $$ for any order $0 < s < d$. We prove that $a \in \mathcal{L}(V_{s})$ if and only if the integral above has a principal value at $a$ and $$\lim_{r \to 0}{\frac{m(B_{r}(a))}{r^{s}}} = 0.$$ In that case, the precise representative of $V_{s}$ at $a$ coincides with the principal value of the integral. We also study the existence of Lebesgue points for the Cauchy integral of the intrinsic probability measure associated with planar Cantor sets, which leads to challenging new questions. Comment: Minor corrections and explanation added at referee's request |
Databáze: | arXiv |
Externí odkaz: |