Tighter constraints of multiqubit entanglement in terms of R\'{e}nyi-$\alpha$ entropy
Autor: | Guo, Meng-Li, Bo-Li, Wang, Zhi-Xi, Fei, Shao-Ming |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Chin. Phys. B Vol. 29, No. 7 (2020) 070304 |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/1674-1056/ab8e2e |
Popis: | Quantum entanglement plays essential roles in quantum information processing. The monogamy and polygamy relations characterize the entanglement distributions in the multipartite systems. We present a class of monogamy inequalities related to the $\mu$th power of the entanglement measure based on R\'{e}nyi-$\alpha$ entropy, as well as polygamy relations in terms of the $\mu$th powered of R\'{e}nyi-$\alpha$ entanglement of assistance. These monogamy and polygamy relations are shown to be tighter than the existing ones. Comment: 10 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |