Autor: |
Donato, Patrizia, Lamacz, Agnes, Schweizer, Ben |
Rok vydání: |
2020 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We analyze the Helmholtz equation in a complex domain. A sound absorbing structure at a part of the boundary is modelled by a periodic geometry with periodicity $\varepsilon>0$. A resonator volume of thickness $\varepsilon$ is connected with thin channels (opening $\varepsilon^3$) with the main part of the macroscopic domain. For this problem with three different scales we analyze solutions in the limit $\varepsilon\to 0$ and find that the effective system can describe sound absorption. |
Databáze: |
arXiv |
Externí odkaz: |
|