An update on the sum-product problem

Autor: Rudnev, Misha, Stevens, Sophie
Rok vydání: 2020
Předmět:
Zdroj: Math. Proc. Cambridge Phil. Soc. 2021
Druh dokumentu: Working Paper
Popis: We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper is largely self-contained.
Comment: 19 pages, refereed version
Databáze: arXiv