Integration operators in average radial integrability spaces of analytic functions
Autor: | Aguilar-Hernández, Tanausú, Contreras, Manuel D., Rodríguez-Piazza, Luis |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we characterize the boundedness, compactness, and weak compactness of the integration operators \begin{align*} T_g (f)(z)=\int_{0}^{z} f(w)g'(w)\ dw \end{align*} acting on the average radial integrability spaces $RM(p,q)$. For these purposes, we develop different tools such as a description of the bidual of $RM(p,0)$ and estimates of the norm of these spaces using the derivative of the functions, a family of results that we call Littlewood-Paley type inequalities. |
Databáze: | arXiv |
Externí odkaz: |