Hyers--Ulam stability for quantum equations

Autor: Anderson, Douglas R., Onitsuka, Masakazu
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: We introduce and study the Hyers--Ulam stability (HUS) of a Cayley quantum ($q$-difference) equation of first order, where the constant coefficient is allowed to range over the complex numbers. In particular, if this coefficient is non-zero, then the quantum equation has Hyers--Ulam stability for certain values of the Cayley parameter, and we establish the best (minimal) HUS constant in terms of the coefficient only, independent of $q$ and the Cayley parameter. If the Cayley parameter equals one half, then there is no Hyers--Ulam stability for any coefficient value in the complex plane.
Comment: 13 pages, preprint
Databáze: arXiv