Hyers--Ulam stability for quantum equations
Autor: | Anderson, Douglas R., Onitsuka, Masakazu |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We introduce and study the Hyers--Ulam stability (HUS) of a Cayley quantum ($q$-difference) equation of first order, where the constant coefficient is allowed to range over the complex numbers. In particular, if this coefficient is non-zero, then the quantum equation has Hyers--Ulam stability for certain values of the Cayley parameter, and we establish the best (minimal) HUS constant in terms of the coefficient only, independent of $q$ and the Cayley parameter. If the Cayley parameter equals one half, then there is no Hyers--Ulam stability for any coefficient value in the complex plane. Comment: 13 pages, preprint |
Databáze: | arXiv |
Externí odkaz: |