Autor: |
Avan, Jean, Frappat, Luc, Ragoucy, Eric |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
SIGMA 16 (2020), 094, 18 pages |
Druh dokumentu: |
Working Paper |
DOI: |
10.3842/SIGMA.2020.094 |
Popis: |
We present a systematic derivation of the abelianity conditions for the $q$-deformed $W$-algebras constructed from the elliptic quantum algebra $\mathcal{A}_{q,p}\big(\widehat{\mathfrak{gl}}(N)_{c}\big)$. We identify two sets of conditions on a given critical surface yielding abelianity lines in the moduli space ($p, q, c$). Each line is identified as an intersection of a countable number of critical surfaces obeying diophantine consistency conditions. The corresponding Poisson brackets structures are then computed for which some universal features are described. |
Databáze: |
arXiv |
Externí odkaz: |
|