Automorphic Schwarzian equations and integrals of weight 2 forms
Autor: | Sebbar, Abdellah, Saber, Hicham |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we investigate the non-modular solutions to the Schwarz differential equation $\{f,\tau \}=sE_4(\tau)$ where $E_4(\tau)$ is the weight 4 Eisenstein series and $s$ is a complex parameter. In particular, we provide explicit solutions for each $s=2\pi^2(n/6)^2$ with $n\equiv 1\mod 12$. These solutions are obtained as integrals of meromorphic weight 2 modular forms. As a consequence, we find explicit solutions to the differential equation $\displaystyle y''+\frac{\pi^2n^2}{36}\,E_4\,y=0$ for each $n\equiv 1\mod 12$ generalizing the work of Hurwitz and Klein on the case $n=1$. Our investigation relies on the theory of equivariant functions on the complex upper half-plane. This paper supplements a previous work where we determine all the parameters $s$ for which the above Schwarzian equation has a modular solution. Comment: 20 pages |
Databáze: | arXiv |
Externí odkaz: |