Multidimensional Matrix Inversions and Elliptic Hypergeometric Series on Root Systems

Autor: Rosengren, Hjalmar, Schlosser, Michael J.
Rok vydání: 2020
Předmět:
Zdroj: SIGMA 16 (2020), 088, 21 pages
Druh dokumentu: Working Paper
DOI: 10.3842/SIGMA.2020.088
Popis: Multidimensional matrix inversions provide a powerful tool for studying multiple hypergeometric series. In order to extend this technique to elliptic hypergeometric series, we present three new multidimensional matrix inversions. As applications, we obtain a new $A_r$ elliptic Jackson summation, as well as several quadratic, cubic and quartic summation formulas.
Databáze: arXiv