The weak lower density condition and uniform rectifiability

Autor: Azzam, Jonas, Hyde, Matthew
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: We show that an Ahlfors $d$-regular set $E$ in $\mathbb{R}^{n}$ is uniformly rectifiable if the set of pairs $(x,r)\in E\times (0,\infty)$ for which there exists $y \in B(x,r)$ and $00$. To prove this, we generalize a result of Schul by proving, if $X$ is a $C$-doubling metric space, $\varepsilon,\rho\in (0,1)$, $A>1$, and $X_{n}$ is a sequence of maximal $2^{-n}$-separated sets in $X$, and $\mathscr{B}=\{B(x,2^{-n}):x\in X_{n},n\in \mathbb{N}\}$, then \[ \sum \left\{r_{B}^{s}: B\in \mathscr{B}, \frac{\mathscr{H}^{s}_{\rho r_{B}}(X\cap AB)}{(2r_{B})^{s}}>1+\varepsilon\right\} \lesssim_{C,A,\varepsilon,\rho,s} \mathscr{H}^{s}(X). \] This is a quantitative version of the classical result that for a metric space $X$ of finite $s$-dimensional Hausdorff measure, the upper $s$-dimensional densities are at most $1$ $\mathscr{H}^{s}$-almost everywhere.
Comment: Fixed typos and minor errors, expanded the introduction, and corrected the counterexample on page 5
Databáze: arXiv