Sharp spectral bounds for complex perturbations of the indefinite Laplacian
Autor: | Cuenin, Jean-Claude, Ibrogimov, Orif O. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We derive quantitative bounds for eigenvalues of complex perturbations of the indefinite Laplacian on the real line. Our results substantially improve existing results even for real-valued potentials. For $L^1$-potentials, we obtain optimal spectral enclosures which accommodate also embedded eigenvalues, while our result for $L^p$-potentials yield sharp spectral bounds on the imaginary parts of eigenvalues of the perturbed operator for all $p\in[1,\infty)$. The sharpness of the results are demonstrated by means of explicit examples. Comment: References added before Theorem 2 and 4 |
Databáze: | arXiv |
Externí odkaz: |