Learning Min-norm Stabilizing Control Laws for Systems with Unknown Dynamics

Autor: Westenbroek, Tyler, Castaneda, Fernando, Agrawal, Ayush, Sastry, S. Shankar, Sreenath, Koushil
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: This paper introduces a framework for learning a minimum-norm stabilizing controller for a system with unknown dynamics using model-free policy optimization methods. The approach begins by first designing a Control Lyapunov Function (CLF) for a (possibly inaccurate) dynamics model for the system, along with a function which specifies a minimum acceptable rate of energy dissipation for the CLF at different points in the state-space. Treating the energy dissipation condition as a constraint on the desired closed-loop behavior of the real-world system, we use penalty methods to formulate an unconstrained optimization problem over the parameters of a learned controller, which can be solved using model-free policy optimization algorithms using data collected from the plant. We discuss when the optimization learns a stabilizing controller for the real world system and derive conditions on the structure of the learned controller which ensure that the optimization is strongly convex, meaning the globally optimal solution can be found reliably. We validate the approach in simulation, first for a double pendulum, and then generalize the framework to learn stable walking controllers for underactuated bipedal robots using the Hybrid Zero Dynamics framework. By encoding a large amount of structure into the learning problem, we are able to learn stabilizing controllers for both systems with only minutes or even seconds of training data.
Databáze: arXiv