Autor: |
Linckelmann, Markus, Livesey, Michael |
Rok vydání: |
2020 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We show that the Green correspondence induces an injective group homomorphism from the linear source Picard group $\mathcal{L}(B)$ of a block $B$ of a finite group algebra to the linear source Picard group $\mathcal{L}(C)$, where $C$ is the Brauer correspondent of $B$. This homomorphism maps the trivial source Picard group $\mathcal{T}(B)$ to the trivial source Picard group $\mathcal{T}(C)$. We show further that the endopermutation source Picard group $\mathcal{E}(B)$ is bounded in terms of the defect groups of $B$ and that when $B$ has a normal defect group $\mathcal{E}(B)=\mathcal{L}(B)$. Finally we prove that the rank of any invertible $B$-bimodule is bounded by that of $B$. |
Databáze: |
arXiv |
Externí odkaz: |
|