Linear source invertible bimodules and Green correspondence

Autor: Linckelmann, Markus, Livesey, Michael
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: We show that the Green correspondence induces an injective group homomorphism from the linear source Picard group $\mathcal{L}(B)$ of a block $B$ of a finite group algebra to the linear source Picard group $\mathcal{L}(C)$, where $C$ is the Brauer correspondent of $B$. This homomorphism maps the trivial source Picard group $\mathcal{T}(B)$ to the trivial source Picard group $\mathcal{T}(C)$. We show further that the endopermutation source Picard group $\mathcal{E}(B)$ is bounded in terms of the defect groups of $B$ and that when $B$ has a normal defect group $\mathcal{E}(B)=\mathcal{L}(B)$. Finally we prove that the rank of any invertible $B$-bimodule is bounded by that of $B$.
Databáze: arXiv